Preprocesamiento de los datos
[['Boldo_0W', 'Boldo_160W', 'Boldo_200W', 'Boldo_280W', 'Boldo_400W'], ['Brasil_0W', 'Brasil_200W', 'Brasil_280W', 'Brasil_400W'], ['Uruguay_0W', 'Uruguay_200W', 'Uruguay_280W', 'Uruguay_400W', 'Uruguay_600W'], ['Romero_0W', 'Romero_200W', 'Romero_280W', 'Romero_400W'], ['Congorosa_0W', 'Congorosa_200W', 'Congorosa_280W', 'Congorosa_400W']]
[[ minutos rendimiento
0 0.000 0.0000
1 6.683 0.9460
2 6.953 1.1193
3 17.053 2.3520
4 25.069 2.8202
5 34.586 3.2030
6 41.586 3.3810
7 52.353 3.5706
8 69.019 3.7933
9 84.019 3.6280, minutos rendimiento
0 0.000 0.000
1 7.250 1.127
2 20.117 2.557
3 25.200 2.835
4 35.917 3.113
5 43.033 3.272
6 53.333 3.406
7 72.950 3.591
8 88.100 3.686, minutos rendimiento
0 0.000 0.000
1 6.850 1.095
2 17.250 2.350
3 25.333 2.872
4 34.750 3.228
5 41.400 3.383
6 58.317 3.555, minutos rendimiento
0 0.000 0.000
1 7.383 1.093
2 18.333 2.339
3 25.333 2.861
4 37.750 3.157
5 43.883 3.301
6 55.750 3.700
7 68.150 3.700
8 82.750 3.821, minutos rendimiento
0 0.000 0.000
1 6.833 1.013
2 18.250 2.206
3 25.483 2.656
4 34.900 2.991
5 41.533 3.433
6 53.183 3.650
7 68.150 3.829
8 82.750 3.934], [ minutos rendimiento
0 0.00 0.0000
1 3.00 0.0508
2 17.58 0.4874
3 25.00 0.7331
4 35.23 1.0231
5 40.65 1.1210
6 50.37 1.1710
7 70.28 1.2448
8 96.00 1.3626, minutos rendimiento
0 0.00 0.000
1 5.00 0.100
2 16.45 0.761
3 25.27 1.073
4 35.53 1.317
5 42.28 1.438
6 55.08 1.532
7 72.85 1.643
8 87.20 1.766, minutos rendimiento
0 0.000 0.000
1 6.733 0.270
2 16.450 0.761
3 17.400 0.846
4 25.270 1.073
5 26.000 1.126
6 35.530 1.317
7 37.067 1.365
8 42.280 1.438
9 45.300 1.522
10 55.080 1.532
11 58.750 1.697
12 77.000 1.760
13 87.200 1.766, minutos rendimiento
0 0.000 0.000
1 6.900 0.174
2 17.367 0.622
3 26.050 0.797
4 38.500 1.006
5 45.900 1.062
6 58.683 1.184
7 77.517 1.354
8 90.183 1.493], [ minutos rendimiento
0 0.000 0.000
1 6.667 0.200
2 7.550 0.283
3 17.117 0.750
4 25.583 0.977
5 35.000 1.146
6 41.667 1.231
7 52.450 1.335
8 59.000 1.365
9 79.333 1.450
10 96.733 1.344, minutos rendimiento
0 0.000 0.000
1 6.967 0.095
2 17.750 0.234
3 26.150 0.298
4 36.667 0.345
5 44.667 0.384
6 53.083 0.416
7 74.867 0.451
8 84.917 0.506, minutos rendimiento
0 0.000 0.000
1 7.417 0.078
2 17.750 0.226
3 25.717 0.294
4 37.033 0.365
5 44.567 0.395
6 55.667 0.426
7 73.250 0.480
8 86.667 0.540, minutos rendimiento
0 0.000 0.000
1 7.583 0.074
2 19.417 0.221
3 28.167 0.357
4 37.917 0.432
5 44.200 0.462
6 54.883 0.498
7 70.233 0.556
8 81.850 0.579, minutos rendimiento
0 0.000 0.000
1 7.000 0.092
2 17.500 0.221
3 25.100 0.381
4 38.450 0.469
5 46.450 0.520
6 57.167 0.564
7 70.100 0.618], [ minutos rendimiento
0 0.000 0.000
1 7.283 1.031
2 17.333 2.284
3 24.750 2.790
4 34.117 3.215
5 40.817 3.379
6 56.705 3.621
7 73.972 3.767
8 84.972 3.833, minutos rendimiento
0 0.000 0.000
1 6.683 1.456
2 15.767 2.491
3 23.083 2.916
4 32.150 3.300
5 38.667 3.350
6 48.250 3.438
7 64.533 3.553
8 79.917 3.719, minutos rendimiento
0 0.000 0.000
1 7.333 1.399
2 21.083 2.378
3 28.483 2.976
4 38.317 3.619
5 45.117 3.750
6 55.650 3.908
7 70.867 4.124
8 84.867 4.292, minutos rendimiento
0 0.000 0.000
1 7.400 1.461
2 17.467 2.412
3 25.800 3.128
4 35.200 3.239
5 45.800 3.254], [ minutos rendimiento
0 0.00 0.0000
1 5.00 0.0080
2 6.83 0.0250
3 16.27 0.2689
4 24.33 0.3520
5 33.80 0.4290
6 39.45 0.4292
7 50.47 0.4336
8 64.15 0.5580
9 79.05 0.6090, minutos rendimiento
0 0.000 0.000
1 5.000 0.119
2 6.917 0.154
3 7.480 0.230
4 16.983 0.634
5 18.120 0.638
6 25.833 0.879
7 27.030 0.788
8 33.983 0.948
9 37.330 0.908
10 44.580 0.957
11 49.783 1.012
12 51.067 1.092
13 55.700 1.023
14 69.667 1.155
15 74.830 1.182
16 87.100 1.317
17 91.233 1.281, minutos rendimiento
0 0.000000 0.000
1 6.470000 0.140
2 15.720000 0.498
3 22.580000 0.638
4 31.870000 0.712
5 38.830000 0.721
6 49.220000 0.721
7 65.000000 0.756
8 79.816667 0.884, minutos rendimiento
0 0.00 0.000
1 7.47 0.089
2 18.10 0.319
3 26.27 0.559
4 35.83 0.659
5 42.25 0.800
6 52.00 0.803
7 68.73 0.864
8 81.43 1.042]]
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
1 |
6.667 |
0.200 |
6.967 |
0.095 |
7.417 |
0.078 |
7.583 |
0.074 |
7.000 |
0.092 |
2 |
7.550 |
0.283 |
17.750 |
0.234 |
17.750 |
0.226 |
19.417 |
0.221 |
17.500 |
0.221 |
3 |
17.117 |
0.750 |
26.150 |
0.298 |
25.717 |
0.294 |
28.167 |
0.357 |
25.100 |
0.381 |
4 |
25.583 |
0.977 |
36.667 |
0.345 |
37.033 |
0.365 |
37.917 |
0.432 |
38.450 |
0.469 |
5 |
35.000 |
1.146 |
44.667 |
0.384 |
44.567 |
0.395 |
44.200 |
0.462 |
46.450 |
0.520 |
6 |
41.667 |
1.231 |
53.083 |
0.416 |
55.667 |
0.426 |
54.883 |
0.498 |
57.167 |
0.564 |
7 |
52.450 |
1.335 |
74.867 |
0.451 |
73.250 |
0.480 |
70.233 |
0.556 |
70.100 |
0.618 |
8 |
59.000 |
1.365 |
84.917 |
0.506 |
86.667 |
0.540 |
81.850 |
0.579 |
NaN |
NaN |
9 |
79.333 |
1.450 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
10 |
96.733 |
1.344 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
1 |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
2 |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
3 |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
4 |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
5 |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
6 |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
7 |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
8 |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
9 |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Boldo |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.00 |
0.0000 |
0.00 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
1 |
3.00 |
0.0508 |
5.00 |
0.100 |
6.733 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
2 |
17.58 |
0.4874 |
16.45 |
0.761 |
16.450 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
3 |
25.00 |
0.7331 |
25.27 |
1.073 |
17.400 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
4 |
35.23 |
1.0231 |
35.53 |
1.317 |
25.270 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
5 |
40.65 |
1.1210 |
42.28 |
1.438 |
26.000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
6 |
50.37 |
1.1710 |
55.08 |
1.532 |
35.530 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
7 |
70.28 |
1.2448 |
72.85 |
1.643 |
37.067 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
8 |
96.00 |
1.3626 |
87.20 |
1.766 |
42.280 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
9 |
NaN |
NaN |
NaN |
NaN |
45.300 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
10 |
NaN |
NaN |
NaN |
NaN |
55.080 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
11 |
NaN |
NaN |
NaN |
NaN |
58.750 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
12 |
NaN |
NaN |
NaN |
NaN |
77.000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
13 |
NaN |
NaN |
NaN |
NaN |
87.200 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Brasil |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
1 |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
2 |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
3 |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
4 |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
5 |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
6 |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
7 |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
8 |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
9 |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Boldo |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
1 |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
2 |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
3 |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
4 |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
5 |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
6 |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
7 |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
8 |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
9 |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
10 |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
11 |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
12 |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
13 |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Brasil |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
1 |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
2 |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
3 |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
4 |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
5 |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
6 |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
7 |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
8 |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
9 |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
10 |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
11 |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
12 |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
13 |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
14 |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
15 |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
16 |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
17 |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
|
|
|
|
|
|
|
|
|
|
Boldo |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Brasil |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Congorosa |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Index(['minutos', 'rendimiento', 'minutos', 'rendimiento', 'minutos',
'rendimiento', 'minutos', 'rendimiento', 'minutos', 'rendimiento'],
dtype='object')
|
Extracción 1 |
Extracción 2 |
Extracción 3 |
Extracción 4 |
Extracción 5 |
|
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
matriz |
|
|
|
|
|
|
|
|
|
|
Boldo |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Brasil |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Congorosa |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Datos operación Yerba Romero
[ 0. 200. 280. 400.]
tr = [ 7.89494813 7.34917765 7.84414133 8.27932474]
Yerba Romero - 400.0 W
X0 = [ 0.03833 0.03719 0.04292 0.03254] <class 'numpy.ndarray'>
xo = 0.03253999999999999, gamma = 2.1692508973607825, yr = 0.0074, TAO = 5.531852105882878
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 7.40000000e+00 1.74670000e+01 2.58000000e+01
3.52000000e+01 4.58000000e+01] <class 'numpy.ndarray'>
[ 0.01 0.8937927 2.10971312 3.11619616 4.25155446 5.53185211] <class 'numpy.ndarray'>
[ 0.0001 0.01461 0.02412 0.03128 0.03239 0.03254]
Datos operación Yerba uruguay
[ 0. 200. 280. 400. 600.]
tr = [ 6.90315722 7.06313825 7.19084665 6.90573444 6.96705883]
Yerba Uruguay - 600.0 W
X0 = [ 0.0145 0.00506 0.0054 0.00579 0.00618] <class 'numpy.ndarray'>
xo = 0.00618, gamma = 1.8798398443346804, yr = 0.0013, TAO = 10.061634577110048
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 1.00472813e+00 2.51182033e+00 3.60266802e+00
5.51882810e+00 6.66708882e+00 8.20532759e+00 1.00616346e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00092 0.00221 0.00381 0.00469 0.0052 0.00564 0.00618]
fin yu
Datos de operación yerba bolbo
tr = [ 6.0855294 6.4236725 7.25440914 6.17722886 6.18946974]
[ 0.28606652 0.27100794 0.23997354 0.28181994 0.28126258]
['bolbo' 'bolbo' 'bolbo' 'bolbo' 'bolbo' 'brasil' 'brasil' 'brasil'
'brasil' 'congorosa' 'congorosa' 'congorosa' 'congorosa']
|
|
Flujo $scCO_2$ [=] gr/min |
Masa matriz vegetal [=] gr |
Ultra Sonido [=] W |
Matriz vegetal |
Extracciones |
|
|
|
bolbo |
Extracción 1 |
10.13199 |
35.4183 |
0.0 |
Extracción 2 |
9.42132 |
34.7640 |
160.0 |
Extracción 3 |
8.39833 |
34.9969 |
200.0 |
Extracción 4 |
9.92660 |
35.2232 |
280.0 |
Extracción 5 |
9.98890 |
35.5145 |
400.0 |
brasil |
Extracción 1 |
9.02448 |
35.3788 |
0.0 |
Extracción 2 |
9.43613 |
34.8116 |
200.0 |
Extracción 3 |
9.12394 |
35.1161 |
280.0 |
Extracción 4 |
8.88352 |
35.5042 |
400.0 |
congorosa |
Extracción 1 |
10.15210 |
34.3674 |
0.0 |
Extracción 2 |
9.37822 |
35.7523 |
200.0 |
Extracción 3 |
10.20529 |
34.6646 |
280.0 |
Extracción 4 |
9.49983 |
34.2914 |
400.0 |
{'Densidad gr/cm3': {'bolbo': 1.25, 'brasil': 1.34, 'congorosa': 1.31},
'Porosidad': {'bolbo': 0.7208, 'brasil': 0.7179, 'congorosa': 0.7137}}
|
Densidad gr/cm3 |
Porosidad |
bolbo |
1.25 |
0.7208 |
brasil |
1.34 |
0.7179 |
congorosa |
1.31 |
0.7137 |
|
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
0 |
0.000 |
0.0000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
1 |
6.683 |
0.9460 |
1.230783 |
7.250 |
1.127 |
1.185647 |
6.850 |
1.095 |
1.257276 |
7.383 |
1.093 |
1.275159 |
6.833 |
1.013 |
1.103972 |
2 |
6.953 |
1.1193 |
1.280508 |
20.117 |
2.557 |
3.289884 |
17.250 |
2.350 |
3.166133 |
18.333 |
2.339 |
3.166395 |
18.250 |
2.206 |
2.948556 |
3 |
17.053 |
2.3520 |
3.140587 |
25.200 |
2.835 |
4.121145 |
25.333 |
2.872 |
4.649719 |
25.333 |
2.861 |
4.375404 |
25.483 |
2.656 |
4.117154 |
4 |
25.069 |
2.8202 |
4.616864 |
35.917 |
3.113 |
5.873776 |
34.750 |
3.228 |
6.378152 |
37.750 |
3.157 |
6.520013 |
34.900 |
2.991 |
5.638609 |
5 |
34.586 |
3.2030 |
6.369575 |
43.033 |
3.272 |
7.037509 |
41.400 |
3.383 |
7.598719 |
43.883 |
3.301 |
7.579278 |
41.533 |
3.433 |
6.710268 |
6 |
41.586 |
3.3810 |
7.658739 |
53.333 |
3.406 |
8.721945 |
58.317 |
3.555 |
10.703732 |
55.750 |
3.700 |
9.628893 |
53.183 |
3.650 |
8.592497 |
7 |
52.353 |
3.5706 |
9.641657 |
72.950 |
3.591 |
11.930060 |
NaN |
NaN |
NaN |
68.150 |
3.700 |
11.770567 |
68.150 |
3.829 |
11.010636 |
8 |
69.019 |
3.7933 |
12.710972 |
88.100 |
3.686 |
14.407653 |
NaN |
NaN |
NaN |
82.750 |
3.821 |
14.292214 |
82.750 |
3.934 |
13.369481 |
9 |
84.019 |
3.6280 |
15.473466 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
280.0
Yerba Bolbo - 400.0 W
X0 = [ 0.037933 0.03686 0.03555 0.03821 0.03934 ] <class 'numpy.ndarray'>
xo = 0.03934, gamma = 1.7408662464183382, yr = 0.0059, TAO = 13.369481303875684
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 3.00000000e-03 1.10397179e+00 2.94855630e+00 4.11715398e+00
5.63860903e+00 6.71026788e+00 8.59249697e+00 1.10106363e+01
1.33694813e+01] <class 'numpy.ndarray'>
[ 0.001 0.01013 0.02206 0.02656 0.02991 0.03433 0.0365 0.03829
0.03934]
Datos de operación yerba brasil
[ 0. 200. 280. 400.]
tr = [ 6.27556792 5.90557503 6.16106767 6.39774269]
Yerba Brasil - 400.0 W
X0 = [ 0.013626 0.01766 0.01766 0.01493 ] <class 'numpy.ndarray'>
xo = 0.01493, gamma = 1.6007817435333078, yr = 0.0059, TAO = 14.096065489128808
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-04 1.07850539e+00 2.71455118e+00 4.07174862e+00
6.01774748e+00 7.17440544e+00 9.17245391e+00 1.21163047e+01
1.40960655e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00174 0.00622 0.00797 0.01006 0.01062 0.01184 0.01354
0.01493]
Datos de operación yerba congorosa
tr = [ 5.42987582 6.11480591 5.44828666 5.78986569]
Yerba Congorosa - 400.0 W
X0 = [ 0.00609 0.01317 0.00884 0.01042] <class 'numpy.ndarray'>
xo = 0.01042, gamma = 1.6039805840774504, yr = 0.0059, TAO = 14.064229522040602
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 1.29018537e+00 3.12615196e+00 4.53723824e+00
6.18839916e+00 7.29723317e+00 8.98121006e+00 1.18707417e+01
1.40642295e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00089 0.00319 0.00559 0.00659 0.008 0.00803 0.00864
0.01042]
Modelo Lack
Ajuste de los parámetros del modelo 1: Modelo Lack
active_mask: array([0, 0])
cost: 0.018300978793627454
fun: array([-0.11809526, 0.37330728, 0.02808377, 0.00718511, -0.00462037, 0. ])
grad: array([ 8.33403474e-04, -1.54227422e-08])
jac: array([[ 0.00000000e+00, -6.35444581e-09],
[ 0.00000000e+00, -6.35444434e-09],
[ 2.06735361e-02, -3.11057628e-01],
[ 3.17151307e-02, -1.76298562e-01],
[ 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00]])
message: 'Both ftol and xtol termination conditions are satisfied.'
nfev: 22
njev: 12
optimality: 6.7744917811128669e-08
status: 4
success: True
x: array([ 5.53594363e-05, 1.20746610e+00])
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:5: RuntimeWarning: invalid value encountered in log
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:4: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:5: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:14: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:17: RuntimeWarning: invalid value encountered in log
[<matplotlib.lines.Line2D at 0x7f203f10ff98>]
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:4: RuntimeWarning: overflow encountered in exp
(1.6759521390448247, 3.7030513340813194, inf)
[<matplotlib.lines.Line2D at 0x7f203f0cd240>]
Modelo Sovova
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:9: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:10: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:28: RuntimeWarning: invalid value encountered in log
active_mask: array([0, 0, 0])
cost: 0.067573820707988189
fun: array([ 1.81182816, -0.78683877, -0.26158694, 0.02518217, -0.00921332,
0.09234707, -0.00521931, -0.0395414 , 0.09887852])
grad: array([ 4.91259316e-02, -2.61716140e-06, -1.03208360e-05])
jac: array([[ 1.64962614e-05, -7.38580870e-12, -2.72356004e-09],
[ 5.71402153e-06, -1.02692647e-13, -1.42693543e-06],
[ 2.03829982e-06, -3.70461323e-14, -1.24830113e-06],
[ 7.58134626e+01, -1.35986181e-06, -6.79077966e+01],
[ 5.16927813e+01, -9.15747753e-07, -6.36407023e+01],
[ 8.24606189e+00, -1.49376459e-07, -1.20250951e+01],
[ 2.71129286e+01, -5.00329665e-07, -4.89541775e+01],
[ 1.19393497e+01, -2.25101586e-07, -2.87292828e+01],
[ 7.43796280e-01, -1.26455894e-08, -2.13102359e+00]])
message: 'xtol termination condition is satisfied.'
nfev: 31
njev: 16
optimality: 0.000515952907784016
status: 3
success: True
x: array([ 0.01040376, 4.62716147, 0.008613 ])
[<matplotlib.lines.Line2D at 0x7effbc368080>]
File "<ipython-input-337-5e85ffa89130>", line 1
x: array([ 0.03829315, 1.70819818, 0.01795442]) #0
^
SyntaxError: invalid syntax
array([ 0.00017276, 0.00280808, 0.00535308, 0.0078023 , 0.01015068,
0.01239369, 0.01452747, 0.01654892, 0.01845584, 0.02024697,
0.02192205, 0.02348181, 0.02492799, 0.02626321, 0.02749096,
0.02861545, 0.02964145, 0.03057426, 0.03141945, 0.03218284,
0.0328703 , 0.0334877 , 0.03404079, 0.03453511, 0.03497599,
0.03536845, 0.03571721, 0.03602665, 0.03630083, 0.03654345,
0.03675791, 0.03694729, 0.03711438, 0.03726167, 0.03739143,
0.03750567, 0.0376062 , 0.03769461, 0.03777233, 0.03784064,
0.03790064, 0.03795334, 0.03799961, 0.03804023, 0.03807588,
0.03810716, 0.0381346 , 0.03815868, 0.0381798 , 0.03819832])
(0.22974968576541693,
24.199480533020207,
5.9097726601403524,
23.083006310073888,
0.023157530596497361,
3.292814746661628)
Help on function plot in module matplotlib.pyplot:
plot(args, **kwargs)
Plot y versus x as lines and/or markers.
Call signatures::
plot([x], y, [fmt], data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
The coordinates of the points or line nodes are given by *x, y.
The optional parameter fmt is a convenient way for defining basic
formatting like color, marker and linestyle. It's a shortcut string
notation described in the Notes section below.
>>> plot(x, y) # plot x and y using default line style and color
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
>>> plot(y) # plot y using x as index array 0..N-1
>>> plot(y, 'r+') # ditto, but with red plusses
You can use .Line2D properties as keyword arguments for more
control on the appearance. Line properties and fmt can be mixed.
The following two calls yield identical results:
>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
linewidth=2, markersize=12)
When conflicting with fmt, keyword arguments take precedence.
Plotting labelled data
There's a convenient way for plotting objects with labelled data (i.e.
data that can be accessed by index obj['y']
). Instead of giving
the data in x and y, you can provide the object in the data
parameter and just give the labels for x and y::
>>> plot('xlabel', 'ylabel', data=obj)
All indexable objects are supported. This could e.g. be a dict, a
pandas.DataFame or a structured numpy array.
Plotting multiple sets of data
There are various ways to plot multiple sets of data.
- The most straight forward way is just to call plot multiple times.
Example:
>>> plot(x1, y1, 'bo')
>>> plot(x2, y2, 'go')
- Alternatively, if your data is already a 2d array, you can pass it
directly to x, y. A separate data set will be drawn for every
column.
Example: an array a
where the first column represents the x
values and the other columns are the y columns::
>>> plot(a[0], a[1:])
- The third way is to specify multiple sets of [x], y, [fmt]
groups::
>>> plot(x1, y1, 'g^', x2, y2, 'g-')
In this case, any additional keyword argument applies to all
datasets. Also this syntax cannot be combined with the data
parameter.
By default, each line is assigned a different style specified by a
'style cycle'. The fmt and line property parameters are only
necessary if you want explicit deviations from these defaults.
Alternatively, you can also change the style cycle using the
'axes.prop_cycle' rcParam.
Parameters
----------
x, y : array-like or scalar
The horizontal / vertical coordinates of the data points.
x values are optional. If not given, they default to
[0, ..., N-1]
.
Commonly, these parameters are arrays of length N. However,
scalars are supported as well (equivalent to an array with
constant value).
The parameters can also be 2-dimensional. Then, the columns
represent separate data sets.
fmt : str, optional
A format string, e.g. 'ro' for red circles. See the Notes
section for a full description of the format strings.
Format strings are just an abbreviation for quickly setting
basic line properties. All of these and more can also be
controlled by keyword arguments.
data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in x and y.
.. note::
Technically there's a slight ambiguity in calls where the
second label is a valid fmt. plot('n', 'o', data=obj)
could be plt(x, y) or plt(y, fmt). In such cases,
the former interpretation is chosen, but a warning is issued.
You may suppress the warning by adding an empty format string
plot('n', 'o', '', data=obj).
Other Parameters
----------------
scalex, scaley : bool, optional, default: True
These parameters determined if the view limits are adapted to
the data limits. The values are passed on to autoscale_view.
kwargs : `.Line2D` properties, optional
*kwargs* are used to specify properties like a line label (for
auto legends), linewidth, antialiasing, marker face color.
Example::
>>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
>>> plot([1,2,3], [1,4,9], 'rs', label='line 2')
If you make multiple lines with one plot command, the kwargs
apply to all those lines.
Here is a list of available `.Line2D` properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha: float (0.0 transparent through 1.0 opaque)
animated: bool
antialiased or aa: bool
clip_box: a `.Bbox` instance
clip_on: bool
clip_path: [(`~matplotlib.path.Path`, `.Transform`) | `.Patch` | None]
color or c: any matplotlib color
contains: a callable function
dash_capstyle: ['butt' | 'round' | 'projecting']
dash_joinstyle: ['miter' | 'round' | 'bevel']
dashes: sequence of on/off ink in points
drawstyle: ['default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post']
figure: a `.Figure` instance
fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top' | 'none']
gid: an id string
label: object
linestyle or ls: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) | ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''``]
linewidth or lw: float value in points
marker: :mod:`A valid marker style <matplotlib.markers>`
markeredgecolor or mec: any matplotlib color
markeredgewidth or mew: float value in points
markerfacecolor or mfc: any matplotlib color
markerfacecoloralt or mfcalt: any matplotlib color
markersize or ms: float
markevery: [None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float]
path_effects: `.AbstractPathEffect`
picker: float distance in points or callable pick function ``fn(artist, event)``
pickradius: float distance in points
rasterized: bool or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: ['butt' | 'round' | 'projecting']
solid_joinstyle: ['miter' | 'round' | 'bevel']
transform: a :class:`matplotlib.transforms.Transform` instance
url: a url string
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
See Also
--------
scatter : XY scatter plot with markers of variing size and/or color (
sometimes also called bubble chart).
Notes
-----
**Format Strings
A format string consists of a part for color, marker and line::
fmt = '[color][marker][line]'
Each of them is optional. If not provided, the value from the style
cycle is used. Exception: If line
is given, but no marker
,
the data will be a line without markers.
Colors
The following color abbreviations are supported:
============= ===============================
character color
============= ===============================
'b'
blue
'g'
green
'r'
red
'c'
cyan
'm'
magenta
'y'
yellow
'k'
black
'w'
white
============= ===============================
If the color is the only part of the format string, you can
additionally use any matplotlib.colors spec, e.g. full names
('green'
) or hex strings ('#008000'
).
Markers
============= ===============================
character description
============= ===============================
'.'
point marker
','
pixel marker
'o'
circle marker
'v'
triangle_down marker
'^'
triangle_up marker
'<'
triangle_left marker
'>'
triangle_right marker
'1'
tri_down marker
'2'
tri_up marker
'3'
tri_left marker
'4'
tri_right marker
's'
square marker
'p'
pentagon marker
'*'
star marker
'h'
hexagon1 marker
'H'
hexagon2 marker
'+'
plus marker
'x'
x marker
'D'
diamond marker
'd'
thin_diamond marker
'|'
vline marker
'_'
hline marker
============= ===============================
Line Styles
============= ===============================
character description
============= ===============================
'-'
solid line style
'--'
dashed line style
'-.'
dash-dot line style
':'
dotted line style
============= ===============================
Example format strings::
'b' # blue markers with default shape
'ro' # red circles
'g-' # green solid line
'--' # dashed line with default color
'k^:' # black triangle_up markers connected by a dotted line
.. note::
In addition to the above described arguments, this function can take a
data keyword argument. If such a data argument is given, the
following arguments are replaced by data[<arg>]:
* All arguments with the following names: 'x', 'y'.
File "<ipython-input-104-c3b0085c4838>", line 1
cielo, la persona de mkt es la que tiene que ofrecer un listado de servicios y productos:
^
SyntaxError: invalid syntax
Preprocesamiento de los datos
[['Boldo_0W', 'Boldo_160W', 'Boldo_200W', 'Boldo_280W', 'Boldo_400W'], ['Brasil_0W', 'Brasil_200W', 'Brasil_280W', 'Brasil_400W'], ['Uruguay_0W', 'Uruguay_200W', 'Uruguay_280W', 'Uruguay_400W', 'Uruguay_600W'], ['Romero_0W', 'Romero_200W', 'Romero_280W', 'Romero_400W'], ['Congorosa_0W', 'Congorosa_200W', 'Congorosa_280W', 'Congorosa_400W']]
[[ minutos rendimiento
0 0.000 0.0000
1 6.683 0.9460
2 6.953 1.1193
3 17.053 2.3520
4 25.069 2.8202
5 34.586 3.2030
6 41.586 3.3810
7 52.353 3.5706
8 69.019 3.7933
9 84.019 3.6280, minutos rendimiento
0 0.000 0.000
1 7.250 1.127
2 20.117 2.557
3 25.200 2.835
4 35.917 3.113
5 43.033 3.272
6 53.333 3.406
7 72.950 3.591
8 88.100 3.686, minutos rendimiento
0 0.000 0.000
1 6.850 1.095
2 17.250 2.350
3 25.333 2.872
4 34.750 3.228
5 41.400 3.383
6 58.317 3.555, minutos rendimiento
0 0.000 0.000
1 7.383 1.093
2 18.333 2.339
3 25.333 2.861
4 37.750 3.157
5 43.883 3.301
6 55.750 3.700
7 68.150 3.700
8 82.750 3.821, minutos rendimiento
0 0.000 0.000
1 6.833 1.013
2 18.250 2.206
3 25.483 2.656
4 34.900 2.991
5 41.533 3.433
6 53.183 3.650
7 68.150 3.829
8 82.750 3.934], [ minutos rendimiento
0 0.00 0.0000
1 3.00 0.0508
2 17.58 0.4874
3 25.00 0.7331
4 35.23 1.0231
5 40.65 1.1210
6 50.37 1.1710
7 70.28 1.2448
8 96.00 1.3626, minutos rendimiento
0 0.00 0.000
1 5.00 0.100
2 16.45 0.761
3 25.27 1.073
4 35.53 1.317
5 42.28 1.438
6 55.08 1.532
7 72.85 1.643
8 87.20 1.766, minutos rendimiento
0 0.000 0.000
1 6.733 0.270
2 16.450 0.761
3 17.400 0.846
4 25.270 1.073
5 26.000 1.126
6 35.530 1.317
7 37.067 1.365
8 42.280 1.438
9 45.300 1.522
10 55.080 1.532
11 58.750 1.697
12 77.000 1.760
13 87.200 1.766, minutos rendimiento
0 0.000 0.000
1 6.900 0.174
2 17.367 0.622
3 26.050 0.797
4 38.500 1.006
5 45.900 1.062
6 58.683 1.184
7 77.517 1.354
8 90.183 1.493], [ minutos rendimiento
0 0.000 0.000
1 6.667 0.200
2 7.550 0.283
3 17.117 0.750
4 25.583 0.977
5 35.000 1.146
6 41.667 1.231
7 52.450 1.335
8 59.000 1.365
9 79.333 1.450
10 96.733 1.344, minutos rendimiento
0 0.000 0.000
1 6.967 0.095
2 17.750 0.234
3 26.150 0.298
4 36.667 0.345
5 44.667 0.384
6 53.083 0.416
7 74.867 0.451
8 84.917 0.506, minutos rendimiento
0 0.000 0.000
1 7.417 0.078
2 17.750 0.226
3 25.717 0.294
4 37.033 0.365
5 44.567 0.395
6 55.667 0.426
7 73.250 0.480
8 86.667 0.540, minutos rendimiento
0 0.000 0.000
1 7.583 0.074
2 19.417 0.221
3 28.167 0.357
4 37.917 0.432
5 44.200 0.462
6 54.883 0.498
7 70.233 0.556
8 81.850 0.579, minutos rendimiento
0 0.000 0.000
1 7.000 0.092
2 17.500 0.221
3 25.100 0.381
4 38.450 0.469
5 46.450 0.520
6 57.167 0.564
7 70.100 0.618], [ minutos rendimiento
0 0.000 0.000
1 7.283 1.031
2 17.333 2.284
3 24.750 2.790
4 34.117 3.215
5 40.817 3.379
6 56.705 3.621
7 73.972 3.767
8 84.972 3.833, minutos rendimiento
0 0.000 0.000
1 6.683 1.456
2 15.767 2.491
3 23.083 2.916
4 32.150 3.300
5 38.667 3.350
6 48.250 3.438
7 64.533 3.553
8 79.917 3.719, minutos rendimiento
0 0.000 0.000
1 7.333 1.399
2 21.083 2.378
3 28.483 2.976
4 38.317 3.619
5 45.117 3.750
6 55.650 3.908
7 70.867 4.124
8 84.867 4.292, minutos rendimiento
0 0.000 0.000
1 7.400 1.461
2 17.467 2.412
3 25.800 3.128
4 35.200 3.239
5 45.800 3.254], [ minutos rendimiento
0 0.00 0.0000
1 5.00 0.0080
2 6.83 0.0250
3 16.27 0.2689
4 24.33 0.3520
5 33.80 0.4290
6 39.45 0.4292
7 50.47 0.4336
8 64.15 0.5580
9 79.05 0.6090, minutos rendimiento
0 0.000 0.000
1 5.000 0.119
2 6.917 0.154
3 7.480 0.230
4 16.983 0.634
5 18.120 0.638
6 25.833 0.879
7 27.030 0.788
8 33.983 0.948
9 37.330 0.908
10 44.580 0.957
11 49.783 1.012
12 51.067 1.092
13 55.700 1.023
14 69.667 1.155
15 74.830 1.182
16 87.100 1.317
17 91.233 1.281, minutos rendimiento
0 0.000000 0.000
1 6.470000 0.140
2 15.720000 0.498
3 22.580000 0.638
4 31.870000 0.712
5 38.830000 0.721
6 49.220000 0.721
7 65.000000 0.756
8 79.816667 0.884, minutos rendimiento
0 0.00 0.000
1 7.47 0.089
2 18.10 0.319
3 26.27 0.559
4 35.83 0.659
5 42.25 0.800
6 52.00 0.803
7 68.73 0.864
8 81.43 1.042]]
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
1 |
6.667 |
0.200 |
6.967 |
0.095 |
7.417 |
0.078 |
7.583 |
0.074 |
7.000 |
0.092 |
2 |
7.550 |
0.283 |
17.750 |
0.234 |
17.750 |
0.226 |
19.417 |
0.221 |
17.500 |
0.221 |
3 |
17.117 |
0.750 |
26.150 |
0.298 |
25.717 |
0.294 |
28.167 |
0.357 |
25.100 |
0.381 |
4 |
25.583 |
0.977 |
36.667 |
0.345 |
37.033 |
0.365 |
37.917 |
0.432 |
38.450 |
0.469 |
5 |
35.000 |
1.146 |
44.667 |
0.384 |
44.567 |
0.395 |
44.200 |
0.462 |
46.450 |
0.520 |
6 |
41.667 |
1.231 |
53.083 |
0.416 |
55.667 |
0.426 |
54.883 |
0.498 |
57.167 |
0.564 |
7 |
52.450 |
1.335 |
74.867 |
0.451 |
73.250 |
0.480 |
70.233 |
0.556 |
70.100 |
0.618 |
8 |
59.000 |
1.365 |
84.917 |
0.506 |
86.667 |
0.540 |
81.850 |
0.579 |
NaN |
NaN |
9 |
79.333 |
1.450 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
10 |
96.733 |
1.344 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
1 |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
2 |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
3 |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
4 |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
5 |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
6 |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
7 |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
8 |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
9 |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Boldo |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.00 |
0.0000 |
0.00 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
1 |
3.00 |
0.0508 |
5.00 |
0.100 |
6.733 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
2 |
17.58 |
0.4874 |
16.45 |
0.761 |
16.450 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
3 |
25.00 |
0.7331 |
25.27 |
1.073 |
17.400 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
4 |
35.23 |
1.0231 |
35.53 |
1.317 |
25.270 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
5 |
40.65 |
1.1210 |
42.28 |
1.438 |
26.000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
6 |
50.37 |
1.1710 |
55.08 |
1.532 |
35.530 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
7 |
70.28 |
1.2448 |
72.85 |
1.643 |
37.067 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
8 |
96.00 |
1.3626 |
87.20 |
1.766 |
42.280 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
9 |
NaN |
NaN |
NaN |
NaN |
45.300 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
10 |
NaN |
NaN |
NaN |
NaN |
55.080 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
11 |
NaN |
NaN |
NaN |
NaN |
58.750 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
12 |
NaN |
NaN |
NaN |
NaN |
77.000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
13 |
NaN |
NaN |
NaN |
NaN |
87.200 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Brasil |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
1 |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
2 |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
3 |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
4 |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
5 |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
6 |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
7 |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
8 |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
9 |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Boldo |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
1 |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
2 |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
3 |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
4 |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
5 |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
6 |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
7 |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
8 |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
9 |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
10 |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
11 |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
12 |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
13 |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Brasil |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
1 |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
2 |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
3 |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
4 |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
5 |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
6 |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
7 |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
8 |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
9 |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
10 |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
11 |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
12 |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
13 |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
14 |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
15 |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
16 |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
17 |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
|
|
|
|
|
|
|
|
|
|
Boldo |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Brasil |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Congorosa |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Index(['minutos', 'rendimiento', 'minutos', 'rendimiento', 'minutos',
'rendimiento', 'minutos', 'rendimiento', 'minutos', 'rendimiento'],
dtype='object')
|
Extracción 1 |
Extracción 2 |
Extracción 3 |
Extracción 4 |
Extracción 5 |
|
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
matriz |
|
|
|
|
|
|
|
|
|
|
Boldo |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Brasil |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Congorosa |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Datos operación Yerba Romero
[ 0. 200. 280. 400.]
tr = [ 7.89494813 7.34917765 7.84414133 8.27932474]
Yerba Romero - 400.0 W
X0 = [ 0.03833 0.03719 0.04292 0.03254] <class 'numpy.ndarray'>
xo = 0.03253999999999999, gamma = 2.1692508973607825, yr = 0.0074, TAO = 5.531852105882878
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 7.40000000e+00 1.74670000e+01 2.58000000e+01
3.52000000e+01 4.58000000e+01] <class 'numpy.ndarray'>
[ 0.01 0.8937927 2.10971312 3.11619616 4.25155446 5.53185211] <class 'numpy.ndarray'>
[ 0.0001 0.01461 0.02412 0.03128 0.03239 0.03254]
Datos operación Yerba uruguay
[ 0. 200. 280. 400. 600.]
tr = [ 6.90315722 7.06313825 7.19084665 6.90573444 6.96705883]
Yerba Uruguay - 600.0 W
X0 = [ 0.0145 0.00506 0.0054 0.00579 0.00618] <class 'numpy.ndarray'>
xo = 0.00618, gamma = 1.8798398443346804, yr = 0.0013, TAO = 10.061634577110048
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 1.00472813e+00 2.51182033e+00 3.60266802e+00
5.51882810e+00 6.66708882e+00 8.20532759e+00 1.00616346e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00092 0.00221 0.00381 0.00469 0.0052 0.00564 0.00618]
fin yu
Datos de operación yerba bolbo
tr = [ 6.0855294 6.4236725 7.25440914 6.17722886 6.18946974]
[ 0.28606652 0.27100794 0.23997354 0.28181994 0.28126258]
['bolbo' 'bolbo' 'bolbo' 'bolbo' 'bolbo' 'brasil' 'brasil' 'brasil'
'brasil' 'congorosa' 'congorosa' 'congorosa' 'congorosa']
|
|
Flujo $scCO_2$ [=] gr/min |
Masa matriz vegetal [=] gr |
Ultra Sonido [=] W |
Matriz vegetal |
Extracciones |
|
|
|
bolbo |
Extracción 1 |
10.13199 |
35.4183 |
0.0 |
Extracción 2 |
9.42132 |
34.7640 |
160.0 |
Extracción 3 |
8.39833 |
34.9969 |
200.0 |
Extracción 4 |
9.92660 |
35.2232 |
280.0 |
Extracción 5 |
9.98890 |
35.5145 |
400.0 |
brasil |
Extracción 1 |
9.02448 |
35.3788 |
0.0 |
Extracción 2 |
9.43613 |
34.8116 |
200.0 |
Extracción 3 |
9.12394 |
35.1161 |
280.0 |
Extracción 4 |
8.88352 |
35.5042 |
400.0 |
congorosa |
Extracción 1 |
10.15210 |
34.3674 |
0.0 |
Extracción 2 |
9.37822 |
35.7523 |
200.0 |
Extracción 3 |
10.20529 |
34.6646 |
280.0 |
Extracción 4 |
9.49983 |
34.2914 |
400.0 |
{'Densidad gr/cm3': {'bolbo': 1.25, 'brasil': 1.34, 'congorosa': 1.31},
'Porosidad': {'bolbo': 0.7208, 'brasil': 0.7179, 'congorosa': 0.7137}}
|
Densidad gr/cm3 |
Porosidad |
bolbo |
1.25 |
0.7208 |
brasil |
1.34 |
0.7179 |
congorosa |
1.31 |
0.7137 |
|
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
0 |
0.000 |
0.0000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
1 |
6.683 |
0.9460 |
1.230783 |
7.250 |
1.127 |
1.185647 |
6.850 |
1.095 |
1.257276 |
7.383 |
1.093 |
1.275159 |
6.833 |
1.013 |
1.103972 |
2 |
6.953 |
1.1193 |
1.280508 |
20.117 |
2.557 |
3.289884 |
17.250 |
2.350 |
3.166133 |
18.333 |
2.339 |
3.166395 |
18.250 |
2.206 |
2.948556 |
3 |
17.053 |
2.3520 |
3.140587 |
25.200 |
2.835 |
4.121145 |
25.333 |
2.872 |
4.649719 |
25.333 |
2.861 |
4.375404 |
25.483 |
2.656 |
4.117154 |
4 |
25.069 |
2.8202 |
4.616864 |
35.917 |
3.113 |
5.873776 |
34.750 |
3.228 |
6.378152 |
37.750 |
3.157 |
6.520013 |
34.900 |
2.991 |
5.638609 |
5 |
34.586 |
3.2030 |
6.369575 |
43.033 |
3.272 |
7.037509 |
41.400 |
3.383 |
7.598719 |
43.883 |
3.301 |
7.579278 |
41.533 |
3.433 |
6.710268 |
6 |
41.586 |
3.3810 |
7.658739 |
53.333 |
3.406 |
8.721945 |
58.317 |
3.555 |
10.703732 |
55.750 |
3.700 |
9.628893 |
53.183 |
3.650 |
8.592497 |
7 |
52.353 |
3.5706 |
9.641657 |
72.950 |
3.591 |
11.930060 |
NaN |
NaN |
NaN |
68.150 |
3.700 |
11.770567 |
68.150 |
3.829 |
11.010636 |
8 |
69.019 |
3.7933 |
12.710972 |
88.100 |
3.686 |
14.407653 |
NaN |
NaN |
NaN |
82.750 |
3.821 |
14.292214 |
82.750 |
3.934 |
13.369481 |
9 |
84.019 |
3.6280 |
15.473466 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
280.0
Yerba Bolbo - 400.0 W
X0 = [ 0.037933 0.03686 0.03555 0.03821 0.03934 ] <class 'numpy.ndarray'>
xo = 0.03934, gamma = 1.7408662464183382, yr = 0.0059, TAO = 13.369481303875684
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 3.00000000e-03 1.10397179e+00 2.94855630e+00 4.11715398e+00
5.63860903e+00 6.71026788e+00 8.59249697e+00 1.10106363e+01
1.33694813e+01] <class 'numpy.ndarray'>
[ 0.001 0.01013 0.02206 0.02656 0.02991 0.03433 0.0365 0.03829
0.03934]
Datos de operación yerba brasil
[ 0. 200. 280. 400.]
tr = [ 6.27556792 5.90557503 6.16106767 6.39774269]
Yerba Brasil - 400.0 W
X0 = [ 0.013626 0.01766 0.01766 0.01493 ] <class 'numpy.ndarray'>
xo = 0.01493, gamma = 1.6007817435333078, yr = 0.0059, TAO = 14.096065489128808
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-04 1.07850539e+00 2.71455118e+00 4.07174862e+00
6.01774748e+00 7.17440544e+00 9.17245391e+00 1.21163047e+01
1.40960655e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00174 0.00622 0.00797 0.01006 0.01062 0.01184 0.01354
0.01493]
Datos de operación yerba congorosa
tr = [ 5.42987582 6.11480591 5.44828666 5.78986569]
Yerba Congorosa - 400.0 W
X0 = [ 0.00609 0.01317 0.00884 0.01042] <class 'numpy.ndarray'>
xo = 0.01042, gamma = 1.6039805840774504, yr = 0.0059, TAO = 14.064229522040602
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 1.29018537e+00 3.12615196e+00 4.53723824e+00
6.18839916e+00 7.29723317e+00 8.98121006e+00 1.18707417e+01
1.40642295e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00089 0.00319 0.00559 0.00659 0.008 0.00803 0.00864
0.01042]
Modelo Lack
Ajuste de los parámetros del modelo 1: Modelo Lack
active_mask: array([0, 0])
cost: 0.018300978793627454
fun: array([-0.11809526, 0.37330728, 0.02808377, 0.00718511, -0.00462037, 0. ])
grad: array([ 8.33403474e-04, -1.54227422e-08])
jac: array([[ 0.00000000e+00, -6.35444581e-09],
[ 0.00000000e+00, -6.35444434e-09],
[ 2.06735361e-02, -3.11057628e-01],
[ 3.17151307e-02, -1.76298562e-01],
[ 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00]])
message: 'Both ftol and xtol termination conditions are satisfied.'
nfev: 22
njev: 12
optimality: 6.7744917811128669e-08
status: 4
success: True
x: array([ 5.53594363e-05, 1.20746610e+00])
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:5: RuntimeWarning: invalid value encountered in log
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:4: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:5: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:14: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:17: RuntimeWarning: invalid value encountered in log
[<matplotlib.lines.Line2D at 0x7f203f10ff98>]
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:4: RuntimeWarning: overflow encountered in exp
(1.6759521390448247, 3.7030513340813194, inf)
[<matplotlib.lines.Line2D at 0x7f203f0cd240>]
Modelo Sovova
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:9: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:10: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:28: RuntimeWarning: invalid value encountered in log
active_mask: array([0, 0, 0])
cost: 0.067573820707988189
fun: array([ 1.81182816, -0.78683877, -0.26158694, 0.02518217, -0.00921332,
0.09234707, -0.00521931, -0.0395414 , 0.09887852])
grad: array([ 4.91259316e-02, -2.61716140e-06, -1.03208360e-05])
jac: array([[ 1.64962614e-05, -7.38580870e-12, -2.72356004e-09],
[ 5.71402153e-06, -1.02692647e-13, -1.42693543e-06],
[ 2.03829982e-06, -3.70461323e-14, -1.24830113e-06],
[ 7.58134626e+01, -1.35986181e-06, -6.79077966e+01],
[ 5.16927813e+01, -9.15747753e-07, -6.36407023e+01],
[ 8.24606189e+00, -1.49376459e-07, -1.20250951e+01],
[ 2.71129286e+01, -5.00329665e-07, -4.89541775e+01],
[ 1.19393497e+01, -2.25101586e-07, -2.87292828e+01],
[ 7.43796280e-01, -1.26455894e-08, -2.13102359e+00]])
message: 'xtol termination condition is satisfied.'
nfev: 31
njev: 16
optimality: 0.000515952907784016
status: 3
success: True
x: array([ 0.01040376, 4.62716147, 0.008613 ])
[<matplotlib.lines.Line2D at 0x7effbc368080>]
File "<ipython-input-337-5e85ffa89130>", line 1
x: array([ 0.03829315, 1.70819818, 0.01795442]) #0
^
SyntaxError: invalid syntax
array([ 0.00017276, 0.00280808, 0.00535308, 0.0078023 , 0.01015068,
0.01239369, 0.01452747, 0.01654892, 0.01845584, 0.02024697,
0.02192205, 0.02348181, 0.02492799, 0.02626321, 0.02749096,
0.02861545, 0.02964145, 0.03057426, 0.03141945, 0.03218284,
0.0328703 , 0.0334877 , 0.03404079, 0.03453511, 0.03497599,
0.03536845, 0.03571721, 0.03602665, 0.03630083, 0.03654345,
0.03675791, 0.03694729, 0.03711438, 0.03726167, 0.03739143,
0.03750567, 0.0376062 , 0.03769461, 0.03777233, 0.03784064,
0.03790064, 0.03795334, 0.03799961, 0.03804023, 0.03807588,
0.03810716, 0.0381346 , 0.03815868, 0.0381798 , 0.03819832])
(0.22974968576541693,
24.199480533020207,
5.9097726601403524,
23.083006310073888,
0.023157530596497361,
3.292814746661628)
Help on function plot in module matplotlib.pyplot:
plot(args, **kwargs)
Plot y versus x as lines and/or markers.
Call signatures::
plot([x], y, [fmt], data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
The coordinates of the points or line nodes are given by *x, y.
The optional parameter fmt is a convenient way for defining basic
formatting like color, marker and linestyle. It's a shortcut string
notation described in the Notes section below.
>>> plot(x, y) # plot x and y using default line style and color
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
>>> plot(y) # plot y using x as index array 0..N-1
>>> plot(y, 'r+') # ditto, but with red plusses
You can use .Line2D properties as keyword arguments for more
control on the appearance. Line properties and fmt can be mixed.
The following two calls yield identical results:
>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
linewidth=2, markersize=12)
When conflicting with fmt, keyword arguments take precedence.
Plotting labelled data
There's a convenient way for plotting objects with labelled data (i.e.
data that can be accessed by index obj['y']
). Instead of giving
the data in x and y, you can provide the object in the data
parameter and just give the labels for x and y::
>>> plot('xlabel', 'ylabel', data=obj)
All indexable objects are supported. This could e.g. be a dict, a
pandas.DataFame or a structured numpy array.
Plotting multiple sets of data
There are various ways to plot multiple sets of data.
- The most straight forward way is just to call plot multiple times.
Example:
>>> plot(x1, y1, 'bo')
>>> plot(x2, y2, 'go')
- Alternatively, if your data is already a 2d array, you can pass it
directly to x, y. A separate data set will be drawn for every
column.
Example: an array a
where the first column represents the x
values and the other columns are the y columns::
>>> plot(a[0], a[1:])
- The third way is to specify multiple sets of [x], y, [fmt]
groups::
>>> plot(x1, y1, 'g^', x2, y2, 'g-')
In this case, any additional keyword argument applies to all
datasets. Also this syntax cannot be combined with the data
parameter.
By default, each line is assigned a different style specified by a
'style cycle'. The fmt and line property parameters are only
necessary if you want explicit deviations from these defaults.
Alternatively, you can also change the style cycle using the
'axes.prop_cycle' rcParam.
Parameters
----------
x, y : array-like or scalar
The horizontal / vertical coordinates of the data points.
x values are optional. If not given, they default to
[0, ..., N-1]
.
Commonly, these parameters are arrays of length N. However,
scalars are supported as well (equivalent to an array with
constant value).
The parameters can also be 2-dimensional. Then, the columns
represent separate data sets.
fmt : str, optional
A format string, e.g. 'ro' for red circles. See the Notes
section for a full description of the format strings.
Format strings are just an abbreviation for quickly setting
basic line properties. All of these and more can also be
controlled by keyword arguments.
data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in x and y.
.. note::
Technically there's a slight ambiguity in calls where the
second label is a valid fmt. plot('n', 'o', data=obj)
could be plt(x, y) or plt(y, fmt). In such cases,
the former interpretation is chosen, but a warning is issued.
You may suppress the warning by adding an empty format string
plot('n', 'o', '', data=obj).
Other Parameters
----------------
scalex, scaley : bool, optional, default: True
These parameters determined if the view limits are adapted to
the data limits. The values are passed on to autoscale_view.
kwargs : `.Line2D` properties, optional
*kwargs* are used to specify properties like a line label (for
auto legends), linewidth, antialiasing, marker face color.
Example::
>>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
>>> plot([1,2,3], [1,4,9], 'rs', label='line 2')
If you make multiple lines with one plot command, the kwargs
apply to all those lines.
Here is a list of available `.Line2D` properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha: float (0.0 transparent through 1.0 opaque)
animated: bool
antialiased or aa: bool
clip_box: a `.Bbox` instance
clip_on: bool
clip_path: [(`~matplotlib.path.Path`, `.Transform`) | `.Patch` | None]
color or c: any matplotlib color
contains: a callable function
dash_capstyle: ['butt' | 'round' | 'projecting']
dash_joinstyle: ['miter' | 'round' | 'bevel']
dashes: sequence of on/off ink in points
drawstyle: ['default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post']
figure: a `.Figure` instance
fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top' | 'none']
gid: an id string
label: object
linestyle or ls: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) | ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''``]
linewidth or lw: float value in points
marker: :mod:`A valid marker style <matplotlib.markers>`
markeredgecolor or mec: any matplotlib color
markeredgewidth or mew: float value in points
markerfacecolor or mfc: any matplotlib color
markerfacecoloralt or mfcalt: any matplotlib color
markersize or ms: float
markevery: [None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float]
path_effects: `.AbstractPathEffect`
picker: float distance in points or callable pick function ``fn(artist, event)``
pickradius: float distance in points
rasterized: bool or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: ['butt' | 'round' | 'projecting']
solid_joinstyle: ['miter' | 'round' | 'bevel']
transform: a :class:`matplotlib.transforms.Transform` instance
url: a url string
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
See Also
--------
scatter : XY scatter plot with markers of variing size and/or color (
sometimes also called bubble chart).
Notes
-----
**Format Strings
A format string consists of a part for color, marker and line::
fmt = '[color][marker][line]'
Each of them is optional. If not provided, the value from the style
cycle is used. Exception: If line
is given, but no marker
,
the data will be a line without markers.
Colors
The following color abbreviations are supported:
============= ===============================
character color
============= ===============================
'b'
blue
'g'
green
'r'
red
'c'
cyan
'm'
magenta
'y'
yellow
'k'
black
'w'
white
============= ===============================
If the color is the only part of the format string, you can
additionally use any matplotlib.colors spec, e.g. full names
('green'
) or hex strings ('#008000'
).
Markers
============= ===============================
character description
============= ===============================
'.'
point marker
','
pixel marker
'o'
circle marker
'v'
triangle_down marker
'^'
triangle_up marker
'<'
triangle_left marker
'>'
triangle_right marker
'1'
tri_down marker
'2'
tri_up marker
'3'
tri_left marker
'4'
tri_right marker
's'
square marker
'p'
pentagon marker
'*'
star marker
'h'
hexagon1 marker
'H'
hexagon2 marker
'+'
plus marker
'x'
x marker
'D'
diamond marker
'd'
thin_diamond marker
'|'
vline marker
'_'
hline marker
============= ===============================
Line Styles
============= ===============================
character description
============= ===============================
'-'
solid line style
'--'
dashed line style
'-.'
dash-dot line style
':'
dotted line style
============= ===============================
Example format strings::
'b' # blue markers with default shape
'ro' # red circles
'g-' # green solid line
'--' # dashed line with default color
'k^:' # black triangle_up markers connected by a dotted line
.. note::
In addition to the above described arguments, this function can take a
data keyword argument. If such a data argument is given, the
following arguments are replaced by data[<arg>]:
* All arguments with the following names: 'x', 'y'.
File "<ipython-input-104-c3b0085c4838>", line 1
cielo, la persona de mkt es la que tiene que ofrecer un listado de servicios y productos:
^
SyntaxError: invalid syntax
Preprocesamiento de los datos
[['Boldo_0W', 'Boldo_160W', 'Boldo_200W', 'Boldo_280W', 'Boldo_400W'], ['Brasil_0W', 'Brasil_200W', 'Brasil_280W', 'Brasil_400W'], ['Uruguay_0W', 'Uruguay_200W', 'Uruguay_280W', 'Uruguay_400W', 'Uruguay_600W'], ['Romero_0W', 'Romero_200W', 'Romero_280W', 'Romero_400W'], ['Congorosa_0W', 'Congorosa_200W', 'Congorosa_280W', 'Congorosa_400W']]
[[ minutos rendimiento
0 0.000 0.0000
1 6.683 0.9460
2 6.953 1.1193
3 17.053 2.3520
4 25.069 2.8202
5 34.586 3.2030
6 41.586 3.3810
7 52.353 3.5706
8 69.019 3.7933
9 84.019 3.6280, minutos rendimiento
0 0.000 0.000
1 7.250 1.127
2 20.117 2.557
3 25.200 2.835
4 35.917 3.113
5 43.033 3.272
6 53.333 3.406
7 72.950 3.591
8 88.100 3.686, minutos rendimiento
0 0.000 0.000
1 6.850 1.095
2 17.250 2.350
3 25.333 2.872
4 34.750 3.228
5 41.400 3.383
6 58.317 3.555, minutos rendimiento
0 0.000 0.000
1 7.383 1.093
2 18.333 2.339
3 25.333 2.861
4 37.750 3.157
5 43.883 3.301
6 55.750 3.700
7 68.150 3.700
8 82.750 3.821, minutos rendimiento
0 0.000 0.000
1 6.833 1.013
2 18.250 2.206
3 25.483 2.656
4 34.900 2.991
5 41.533 3.433
6 53.183 3.650
7 68.150 3.829
8 82.750 3.934], [ minutos rendimiento
0 0.00 0.0000
1 3.00 0.0508
2 17.58 0.4874
3 25.00 0.7331
4 35.23 1.0231
5 40.65 1.1210
6 50.37 1.1710
7 70.28 1.2448
8 96.00 1.3626, minutos rendimiento
0 0.00 0.000
1 5.00 0.100
2 16.45 0.761
3 25.27 1.073
4 35.53 1.317
5 42.28 1.438
6 55.08 1.532
7 72.85 1.643
8 87.20 1.766, minutos rendimiento
0 0.000 0.000
1 6.733 0.270
2 16.450 0.761
3 17.400 0.846
4 25.270 1.073
5 26.000 1.126
6 35.530 1.317
7 37.067 1.365
8 42.280 1.438
9 45.300 1.522
10 55.080 1.532
11 58.750 1.697
12 77.000 1.760
13 87.200 1.766, minutos rendimiento
0 0.000 0.000
1 6.900 0.174
2 17.367 0.622
3 26.050 0.797
4 38.500 1.006
5 45.900 1.062
6 58.683 1.184
7 77.517 1.354
8 90.183 1.493], [ minutos rendimiento
0 0.000 0.000
1 6.667 0.200
2 7.550 0.283
3 17.117 0.750
4 25.583 0.977
5 35.000 1.146
6 41.667 1.231
7 52.450 1.335
8 59.000 1.365
9 79.333 1.450
10 96.733 1.344, minutos rendimiento
0 0.000 0.000
1 6.967 0.095
2 17.750 0.234
3 26.150 0.298
4 36.667 0.345
5 44.667 0.384
6 53.083 0.416
7 74.867 0.451
8 84.917 0.506, minutos rendimiento
0 0.000 0.000
1 7.417 0.078
2 17.750 0.226
3 25.717 0.294
4 37.033 0.365
5 44.567 0.395
6 55.667 0.426
7 73.250 0.480
8 86.667 0.540, minutos rendimiento
0 0.000 0.000
1 7.583 0.074
2 19.417 0.221
3 28.167 0.357
4 37.917 0.432
5 44.200 0.462
6 54.883 0.498
7 70.233 0.556
8 81.850 0.579, minutos rendimiento
0 0.000 0.000
1 7.000 0.092
2 17.500 0.221
3 25.100 0.381
4 38.450 0.469
5 46.450 0.520
6 57.167 0.564
7 70.100 0.618], [ minutos rendimiento
0 0.000 0.000
1 7.283 1.031
2 17.333 2.284
3 24.750 2.790
4 34.117 3.215
5 40.817 3.379
6 56.705 3.621
7 73.972 3.767
8 84.972 3.833, minutos rendimiento
0 0.000 0.000
1 6.683 1.456
2 15.767 2.491
3 23.083 2.916
4 32.150 3.300
5 38.667 3.350
6 48.250 3.438
7 64.533 3.553
8 79.917 3.719, minutos rendimiento
0 0.000 0.000
1 7.333 1.399
2 21.083 2.378
3 28.483 2.976
4 38.317 3.619
5 45.117 3.750
6 55.650 3.908
7 70.867 4.124
8 84.867 4.292, minutos rendimiento
0 0.000 0.000
1 7.400 1.461
2 17.467 2.412
3 25.800 3.128
4 35.200 3.239
5 45.800 3.254], [ minutos rendimiento
0 0.00 0.0000
1 5.00 0.0080
2 6.83 0.0250
3 16.27 0.2689
4 24.33 0.3520
5 33.80 0.4290
6 39.45 0.4292
7 50.47 0.4336
8 64.15 0.5580
9 79.05 0.6090, minutos rendimiento
0 0.000 0.000
1 5.000 0.119
2 6.917 0.154
3 7.480 0.230
4 16.983 0.634
5 18.120 0.638
6 25.833 0.879
7 27.030 0.788
8 33.983 0.948
9 37.330 0.908
10 44.580 0.957
11 49.783 1.012
12 51.067 1.092
13 55.700 1.023
14 69.667 1.155
15 74.830 1.182
16 87.100 1.317
17 91.233 1.281, minutos rendimiento
0 0.000000 0.000
1 6.470000 0.140
2 15.720000 0.498
3 22.580000 0.638
4 31.870000 0.712
5 38.830000 0.721
6 49.220000 0.721
7 65.000000 0.756
8 79.816667 0.884, minutos rendimiento
0 0.00 0.000
1 7.47 0.089
2 18.10 0.319
3 26.27 0.559
4 35.83 0.659
5 42.25 0.800
6 52.00 0.803
7 68.73 0.864
8 81.43 1.042]]
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
0 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
1 |
6.667 |
0.200 |
6.967 |
0.095 |
7.417 |
0.078 |
7.583 |
0.074 |
7.000 |
0.092 |
2 |
7.550 |
0.283 |
17.750 |
0.234 |
17.750 |
0.226 |
19.417 |
0.221 |
17.500 |
0.221 |
3 |
17.117 |
0.750 |
26.150 |
0.298 |
25.717 |
0.294 |
28.167 |
0.357 |
25.100 |
0.381 |
4 |
25.583 |
0.977 |
36.667 |
0.345 |
37.033 |
0.365 |
37.917 |
0.432 |
38.450 |
0.469 |
5 |
35.000 |
1.146 |
44.667 |
0.384 |
44.567 |
0.395 |
44.200 |
0.462 |
46.450 |
0.520 |
6 |
41.667 |
1.231 |
53.083 |
0.416 |
55.667 |
0.426 |
54.883 |
0.498 |
57.167 |
0.564 |
7 |
52.450 |
1.335 |
74.867 |
0.451 |
73.250 |
0.480 |
70.233 |
0.556 |
70.100 |
0.618 |
8 |
59.000 |
1.365 |
84.917 |
0.506 |
86.667 |
0.540 |
81.850 |
0.579 |
NaN |
NaN |
9 |
79.333 |
1.450 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
10 |
96.733 |
1.344 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
1 |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
2 |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
3 |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
4 |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
5 |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
6 |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
7 |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
8 |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
9 |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Boldo |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.00 |
0.0000 |
0.00 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
1 |
3.00 |
0.0508 |
5.00 |
0.100 |
6.733 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
2 |
17.58 |
0.4874 |
16.45 |
0.761 |
16.450 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
3 |
25.00 |
0.7331 |
25.27 |
1.073 |
17.400 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
4 |
35.23 |
1.0231 |
35.53 |
1.317 |
25.270 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
5 |
40.65 |
1.1210 |
42.28 |
1.438 |
26.000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
6 |
50.37 |
1.1710 |
55.08 |
1.532 |
35.530 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
7 |
70.28 |
1.2448 |
72.85 |
1.643 |
37.067 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
8 |
96.00 |
1.3626 |
87.20 |
1.766 |
42.280 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
9 |
NaN |
NaN |
NaN |
NaN |
45.300 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
10 |
NaN |
NaN |
NaN |
NaN |
55.080 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
11 |
NaN |
NaN |
NaN |
NaN |
58.750 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
12 |
NaN |
NaN |
NaN |
NaN |
77.000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
13 |
NaN |
NaN |
NaN |
NaN |
87.200 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Brasil |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
1 |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
2 |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
3 |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
4 |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
5 |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
6 |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
7 |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
8 |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
9 |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Boldo |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
1 |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
2 |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
3 |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
4 |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
5 |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
6 |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
7 |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
8 |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
9 |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
10 |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
11 |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
12 |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
13 |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Brasil |
0 |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
1 |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
2 |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
3 |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
4 |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
5 |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
6 |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
7 |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
8 |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
9 |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
10 |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
11 |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
12 |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
13 |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
14 |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
15 |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
16 |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
17 |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
|
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
minutos |
rendimiento |
matriz |
|
|
|
|
|
|
|
|
|
|
Boldo |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Brasil |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Congorosa |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Index(['minutos', 'rendimiento', 'minutos', 'rendimiento', 'minutos',
'rendimiento', 'minutos', 'rendimiento', 'minutos', 'rendimiento'],
dtype='object')
|
Extracción 1 |
Extracción 2 |
Extracción 3 |
Extracción 4 |
Extracción 5 |
|
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
$t$ [=] min |
$e$ |
matriz |
|
|
|
|
|
|
|
|
|
|
Boldo |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Boldo |
6.683 |
0.9460 |
7.250 |
1.127 |
6.850000 |
1.095 |
7.383 |
1.093 |
6.833 |
1.013 |
Boldo |
6.953 |
1.1193 |
20.117 |
2.557 |
17.250000 |
2.350 |
18.333 |
2.339 |
18.250 |
2.206 |
Boldo |
17.053 |
2.3520 |
25.200 |
2.835 |
25.333000 |
2.872 |
25.333 |
2.861 |
25.483 |
2.656 |
Boldo |
25.069 |
2.8202 |
35.917 |
3.113 |
34.750000 |
3.228 |
37.750 |
3.157 |
34.900 |
2.991 |
Boldo |
34.586 |
3.2030 |
43.033 |
3.272 |
41.400000 |
3.383 |
43.883 |
3.301 |
41.533 |
3.433 |
Boldo |
41.586 |
3.3810 |
53.333 |
3.406 |
58.317000 |
3.555 |
55.750 |
3.700 |
53.183 |
3.650 |
Boldo |
52.353 |
3.5706 |
72.950 |
3.591 |
NaN |
NaN |
68.150 |
3.700 |
68.150 |
3.829 |
Boldo |
69.019 |
3.7933 |
88.100 |
3.686 |
NaN |
NaN |
82.750 |
3.821 |
82.750 |
3.934 |
Boldo |
84.019 |
3.6280 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Brasil |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Brasil |
3.000 |
0.0508 |
5.000 |
0.100 |
6.733000 |
0.270 |
6.900 |
0.174 |
NaN |
NaN |
Brasil |
17.580 |
0.4874 |
16.450 |
0.761 |
16.450000 |
0.761 |
17.367 |
0.622 |
NaN |
NaN |
Brasil |
25.000 |
0.7331 |
25.270 |
1.073 |
17.400000 |
0.846 |
26.050 |
0.797 |
NaN |
NaN |
Brasil |
35.230 |
1.0231 |
35.530 |
1.317 |
25.270000 |
1.073 |
38.500 |
1.006 |
NaN |
NaN |
Brasil |
40.650 |
1.1210 |
42.280 |
1.438 |
26.000000 |
1.126 |
45.900 |
1.062 |
NaN |
NaN |
Brasil |
50.370 |
1.1710 |
55.080 |
1.532 |
35.530000 |
1.317 |
58.683 |
1.184 |
NaN |
NaN |
Brasil |
70.280 |
1.2448 |
72.850 |
1.643 |
37.067000 |
1.365 |
77.517 |
1.354 |
NaN |
NaN |
Brasil |
96.000 |
1.3626 |
87.200 |
1.766 |
42.280000 |
1.438 |
90.183 |
1.493 |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
45.300000 |
1.522 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
55.080000 |
1.532 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
58.750000 |
1.697 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
77.000000 |
1.760 |
NaN |
NaN |
NaN |
NaN |
Brasil |
NaN |
NaN |
NaN |
NaN |
87.200000 |
1.766 |
NaN |
NaN |
NaN |
NaN |
Congorosa |
0.000 |
0.0000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000 |
NaN |
NaN |
Congorosa |
5.000 |
0.0080 |
5.000 |
0.119 |
6.470000 |
0.140 |
7.470 |
0.089 |
NaN |
NaN |
Congorosa |
6.830 |
0.0250 |
6.917 |
0.154 |
15.720000 |
0.498 |
18.100 |
0.319 |
NaN |
NaN |
Congorosa |
16.270 |
0.2689 |
7.480 |
0.230 |
22.580000 |
0.638 |
26.270 |
0.559 |
NaN |
NaN |
Congorosa |
24.330 |
0.3520 |
16.983 |
0.634 |
31.870000 |
0.712 |
35.830 |
0.659 |
NaN |
NaN |
Congorosa |
33.800 |
0.4290 |
18.120 |
0.638 |
38.830000 |
0.721 |
42.250 |
0.800 |
NaN |
NaN |
Congorosa |
39.450 |
0.4292 |
25.833 |
0.879 |
49.220000 |
0.721 |
52.000 |
0.803 |
NaN |
NaN |
Congorosa |
50.470 |
0.4336 |
27.030 |
0.788 |
65.000000 |
0.756 |
68.730 |
0.864 |
NaN |
NaN |
Congorosa |
64.150 |
0.5580 |
33.983 |
0.948 |
79.816667 |
0.884 |
81.430 |
1.042 |
NaN |
NaN |
Congorosa |
79.050 |
0.6090 |
37.330 |
0.908 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
44.580 |
0.957 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
49.783 |
1.012 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
51.067 |
1.092 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
55.700 |
1.023 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
69.667 |
1.155 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
74.830 |
1.182 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
87.100 |
1.317 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Congorosa |
NaN |
NaN |
91.233 |
1.281 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Datos operación Yerba Romero
[ 0. 200. 280. 400.]
tr = [ 7.89494813 7.34917765 7.84414133 8.27932474]
Yerba Romero - 400.0 W
X0 = [ 0.03833 0.03719 0.04292 0.03254] <class 'numpy.ndarray'>
xo = 0.03253999999999999, gamma = 2.1692508973607825, yr = 0.0074, TAO = 5.531852105882878
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 7.40000000e+00 1.74670000e+01 2.58000000e+01
3.52000000e+01 4.58000000e+01] <class 'numpy.ndarray'>
[ 0.01 0.8937927 2.10971312 3.11619616 4.25155446 5.53185211] <class 'numpy.ndarray'>
[ 0.0001 0.01461 0.02412 0.03128 0.03239 0.03254]
Datos operación Yerba uruguay
[ 0. 200. 280. 400. 600.]
tr = [ 6.90315722 7.06313825 7.19084665 6.90573444 6.96705883]
Yerba Uruguay - 600.0 W
X0 = [ 0.0145 0.00506 0.0054 0.00579 0.00618] <class 'numpy.ndarray'>
xo = 0.00618, gamma = 1.8798398443346804, yr = 0.0013, TAO = 10.061634577110048
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 1.00472813e+00 2.51182033e+00 3.60266802e+00
5.51882810e+00 6.66708882e+00 8.20532759e+00 1.00616346e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00092 0.00221 0.00381 0.00469 0.0052 0.00564 0.00618]
fin yu
Datos de operación yerba bolbo
tr = [ 6.0855294 6.4236725 7.25440914 6.17722886 6.18946974]
[ 0.28606652 0.27100794 0.23997354 0.28181994 0.28126258]
['bolbo' 'bolbo' 'bolbo' 'bolbo' 'bolbo' 'brasil' 'brasil' 'brasil'
'brasil' 'congorosa' 'congorosa' 'congorosa' 'congorosa']
|
|
Flujo $scCO_2$ [=] gr/min |
Masa matriz vegetal [=] gr |
Ultra Sonido [=] W |
Matriz vegetal |
Extracciones |
|
|
|
bolbo |
Extracción 1 |
10.13199 |
35.4183 |
0.0 |
Extracción 2 |
9.42132 |
34.7640 |
160.0 |
Extracción 3 |
8.39833 |
34.9969 |
200.0 |
Extracción 4 |
9.92660 |
35.2232 |
280.0 |
Extracción 5 |
9.98890 |
35.5145 |
400.0 |
brasil |
Extracción 1 |
9.02448 |
35.3788 |
0.0 |
Extracción 2 |
9.43613 |
34.8116 |
200.0 |
Extracción 3 |
9.12394 |
35.1161 |
280.0 |
Extracción 4 |
8.88352 |
35.5042 |
400.0 |
congorosa |
Extracción 1 |
10.15210 |
34.3674 |
0.0 |
Extracción 2 |
9.37822 |
35.7523 |
200.0 |
Extracción 3 |
10.20529 |
34.6646 |
280.0 |
Extracción 4 |
9.49983 |
34.2914 |
400.0 |
{'Densidad gr/cm3': {'bolbo': 1.25, 'brasil': 1.34, 'congorosa': 1.31},
'Porosidad': {'bolbo': 0.7208, 'brasil': 0.7179, 'congorosa': 0.7137}}
|
Densidad gr/cm3 |
Porosidad |
bolbo |
1.25 |
0.7208 |
brasil |
1.34 |
0.7179 |
congorosa |
1.31 |
0.7137 |
|
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
minutos |
rendimiento |
TAO |
0 |
0.000 |
0.0000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
0.000 |
0.000 |
0.000000 |
1 |
6.683 |
0.9460 |
1.230783 |
7.250 |
1.127 |
1.185647 |
6.850 |
1.095 |
1.257276 |
7.383 |
1.093 |
1.275159 |
6.833 |
1.013 |
1.103972 |
2 |
6.953 |
1.1193 |
1.280508 |
20.117 |
2.557 |
3.289884 |
17.250 |
2.350 |
3.166133 |
18.333 |
2.339 |
3.166395 |
18.250 |
2.206 |
2.948556 |
3 |
17.053 |
2.3520 |
3.140587 |
25.200 |
2.835 |
4.121145 |
25.333 |
2.872 |
4.649719 |
25.333 |
2.861 |
4.375404 |
25.483 |
2.656 |
4.117154 |
4 |
25.069 |
2.8202 |
4.616864 |
35.917 |
3.113 |
5.873776 |
34.750 |
3.228 |
6.378152 |
37.750 |
3.157 |
6.520013 |
34.900 |
2.991 |
5.638609 |
5 |
34.586 |
3.2030 |
6.369575 |
43.033 |
3.272 |
7.037509 |
41.400 |
3.383 |
7.598719 |
43.883 |
3.301 |
7.579278 |
41.533 |
3.433 |
6.710268 |
6 |
41.586 |
3.3810 |
7.658739 |
53.333 |
3.406 |
8.721945 |
58.317 |
3.555 |
10.703732 |
55.750 |
3.700 |
9.628893 |
53.183 |
3.650 |
8.592497 |
7 |
52.353 |
3.5706 |
9.641657 |
72.950 |
3.591 |
11.930060 |
NaN |
NaN |
NaN |
68.150 |
3.700 |
11.770567 |
68.150 |
3.829 |
11.010636 |
8 |
69.019 |
3.7933 |
12.710972 |
88.100 |
3.686 |
14.407653 |
NaN |
NaN |
NaN |
82.750 |
3.821 |
14.292214 |
82.750 |
3.934 |
13.369481 |
9 |
84.019 |
3.6280 |
15.473466 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
280.0
Yerba Bolbo - 400.0 W
X0 = [ 0.037933 0.03686 0.03555 0.03821 0.03934 ] <class 'numpy.ndarray'>
xo = 0.03934, gamma = 1.7408662464183382, yr = 0.0059, TAO = 13.369481303875684
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 3.00000000e-03 1.10397179e+00 2.94855630e+00 4.11715398e+00
5.63860903e+00 6.71026788e+00 8.59249697e+00 1.10106363e+01
1.33694813e+01] <class 'numpy.ndarray'>
[ 0.001 0.01013 0.02206 0.02656 0.02991 0.03433 0.0365 0.03829
0.03934]
Datos de operación yerba brasil
[ 0. 200. 280. 400.]
tr = [ 6.27556792 5.90557503 6.16106767 6.39774269]
Yerba Brasil - 400.0 W
X0 = [ 0.013626 0.01766 0.01766 0.01493 ] <class 'numpy.ndarray'>
xo = 0.01493, gamma = 1.6007817435333078, yr = 0.0059, TAO = 14.096065489128808
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-04 1.07850539e+00 2.71455118e+00 4.07174862e+00
6.01774748e+00 7.17440544e+00 9.17245391e+00 1.21163047e+01
1.40960655e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00174 0.00622 0.00797 0.01006 0.01062 0.01184 0.01354
0.01493]
Datos de operación yerba congorosa
tr = [ 5.42987582 6.11480591 5.44828666 5.78986569]
Yerba Congorosa - 400.0 W
X0 = [ 0.00609 0.01317 0.00884 0.01042] <class 'numpy.ndarray'>
xo = 0.01042, gamma = 1.6039805840774504, yr = 0.0059, TAO = 14.064229522040602
array([[ 0.01 , 1. ],
[ 0.01 , 0.5 ],
[ 0.030321, 1.5 ]])
[ 1.00000000e-02 1.29018537e+00 3.12615196e+00 4.53723824e+00
6.18839916e+00 7.29723317e+00 8.98121006e+00 1.18707417e+01
1.40642295e+01] <class 'numpy.ndarray'>
[ 0.0001 0.00089 0.00319 0.00559 0.00659 0.008 0.00803 0.00864
0.01042]
Modelo Lack
Ajuste de los parámetros del modelo 1: Modelo Lack
active_mask: array([0, 0])
cost: 0.018300978793627454
fun: array([-0.11809526, 0.37330728, 0.02808377, 0.00718511, -0.00462037, 0. ])
grad: array([ 8.33403474e-04, -1.54227422e-08])
jac: array([[ 0.00000000e+00, -6.35444581e-09],
[ 0.00000000e+00, -6.35444434e-09],
[ 2.06735361e-02, -3.11057628e-01],
[ 3.17151307e-02, -1.76298562e-01],
[ 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00]])
message: 'Both ftol and xtol termination conditions are satisfied.'
nfev: 22
njev: 12
optimality: 6.7744917811128669e-08
status: 4
success: True
x: array([ 5.53594363e-05, 1.20746610e+00])
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:5: RuntimeWarning: invalid value encountered in log
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:4: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:5: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:14: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:17: RuntimeWarning: invalid value encountered in log
[<matplotlib.lines.Line2D at 0x7f203f10ff98>]
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:4: RuntimeWarning: overflow encountered in exp
(1.6759521390448247, 3.7030513340813194, inf)
[<matplotlib.lines.Line2D at 0x7f203f0cd240>]
Modelo Sovova
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:9: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:10: RuntimeWarning: overflow encountered in exp
/home/andres-python/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:28: RuntimeWarning: invalid value encountered in log
active_mask: array([0, 0, 0])
cost: 0.067573820707988189
fun: array([ 1.81182816, -0.78683877, -0.26158694, 0.02518217, -0.00921332,
0.09234707, -0.00521931, -0.0395414 , 0.09887852])
grad: array([ 4.91259316e-02, -2.61716140e-06, -1.03208360e-05])
jac: array([[ 1.64962614e-05, -7.38580870e-12, -2.72356004e-09],
[ 5.71402153e-06, -1.02692647e-13, -1.42693543e-06],
[ 2.03829982e-06, -3.70461323e-14, -1.24830113e-06],
[ 7.58134626e+01, -1.35986181e-06, -6.79077966e+01],
[ 5.16927813e+01, -9.15747753e-07, -6.36407023e+01],
[ 8.24606189e+00, -1.49376459e-07, -1.20250951e+01],
[ 2.71129286e+01, -5.00329665e-07, -4.89541775e+01],
[ 1.19393497e+01, -2.25101586e-07, -2.87292828e+01],
[ 7.43796280e-01, -1.26455894e-08, -2.13102359e+00]])
message: 'xtol termination condition is satisfied.'
nfev: 31
njev: 16
optimality: 0.000515952907784016
status: 3
success: True
x: array([ 0.01040376, 4.62716147, 0.008613 ])
[<matplotlib.lines.Line2D at 0x7effbc368080>]
File "<ipython-input-337-5e85ffa89130>", line 1
x: array([ 0.03829315, 1.70819818, 0.01795442]) #0
^
SyntaxError: invalid syntax
array([ 0.00017276, 0.00280808, 0.00535308, 0.0078023 , 0.01015068,
0.01239369, 0.01452747, 0.01654892, 0.01845584, 0.02024697,
0.02192205, 0.02348181, 0.02492799, 0.02626321, 0.02749096,
0.02861545, 0.02964145, 0.03057426, 0.03141945, 0.03218284,
0.0328703 , 0.0334877 , 0.03404079, 0.03453511, 0.03497599,
0.03536845, 0.03571721, 0.03602665, 0.03630083, 0.03654345,
0.03675791, 0.03694729, 0.03711438, 0.03726167, 0.03739143,
0.03750567, 0.0376062 , 0.03769461, 0.03777233, 0.03784064,
0.03790064, 0.03795334, 0.03799961, 0.03804023, 0.03807588,
0.03810716, 0.0381346 , 0.03815868, 0.0381798 , 0.03819832])
(0.22974968576541693,
24.199480533020207,
5.9097726601403524,
23.083006310073888,
0.023157530596497361,
3.292814746661628)
Help on function plot in module matplotlib.pyplot:
plot(args, **kwargs)
Plot y versus x as lines and/or markers.
Call signatures::
plot([x], y, [fmt], data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
The coordinates of the points or line nodes are given by *x, y.
The optional parameter fmt is a convenient way for defining basic
formatting like color, marker and linestyle. It's a shortcut string
notation described in the Notes section below.
>>> plot(x, y) # plot x and y using default line style and color
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
>>> plot(y) # plot y using x as index array 0..N-1
>>> plot(y, 'r+') # ditto, but with red plusses
You can use .Line2D properties as keyword arguments for more
control on the appearance. Line properties and fmt can be mixed.
The following two calls yield identical results:
>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
linewidth=2, markersize=12)
When conflicting with fmt, keyword arguments take precedence.
Plotting labelled data
There's a convenient way for plotting objects with labelled data (i.e.
data that can be accessed by index obj['y']
). Instead of giving
the data in x and y, you can provide the object in the data
parameter and just give the labels for x and y::
>>> plot('xlabel', 'ylabel', data=obj)
All indexable objects are supported. This could e.g. be a dict, a
pandas.DataFame or a structured numpy array.
Plotting multiple sets of data
There are various ways to plot multiple sets of data.
- The most straight forward way is just to call plot multiple times.
Example:
>>> plot(x1, y1, 'bo')
>>> plot(x2, y2, 'go')
- Alternatively, if your data is already a 2d array, you can pass it
directly to x, y. A separate data set will be drawn for every
column.
Example: an array a
where the first column represents the x
values and the other columns are the y columns::
>>> plot(a[0], a[1:])
- The third way is to specify multiple sets of [x], y, [fmt]
groups::
>>> plot(x1, y1, 'g^', x2, y2, 'g-')
In this case, any additional keyword argument applies to all
datasets. Also this syntax cannot be combined with the data
parameter.
By default, each line is assigned a different style specified by a
'style cycle'. The fmt and line property parameters are only
necessary if you want explicit deviations from these defaults.
Alternatively, you can also change the style cycle using the
'axes.prop_cycle' rcParam.
Parameters
----------
x, y : array-like or scalar
The horizontal / vertical coordinates of the data points.
x values are optional. If not given, they default to
[0, ..., N-1]
.
Commonly, these parameters are arrays of length N. However,
scalars are supported as well (equivalent to an array with
constant value).
The parameters can also be 2-dimensional. Then, the columns
represent separate data sets.
fmt : str, optional
A format string, e.g. 'ro' for red circles. See the Notes
section for a full description of the format strings.
Format strings are just an abbreviation for quickly setting
basic line properties. All of these and more can also be
controlled by keyword arguments.
data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in x and y.
.. note::
Technically there's a slight ambiguity in calls where the
second label is a valid fmt. plot('n', 'o', data=obj)
could be plt(x, y) or plt(y, fmt). In such cases,
the former interpretation is chosen, but a warning is issued.
You may suppress the warning by adding an empty format string
plot('n', 'o', '', data=obj).
Other Parameters
----------------
scalex, scaley : bool, optional, default: True
These parameters determined if the view limits are adapted to
the data limits. The values are passed on to autoscale_view.
kwargs : `.Line2D` properties, optional
*kwargs* are used to specify properties like a line label (for
auto legends), linewidth, antialiasing, marker face color.
Example::
>>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
>>> plot([1,2,3], [1,4,9], 'rs', label='line 2')
If you make multiple lines with one plot command, the kwargs
apply to all those lines.
Here is a list of available `.Line2D` properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha: float (0.0 transparent through 1.0 opaque)
animated: bool
antialiased or aa: bool
clip_box: a `.Bbox` instance
clip_on: bool
clip_path: [(`~matplotlib.path.Path`, `.Transform`) | `.Patch` | None]
color or c: any matplotlib color
contains: a callable function
dash_capstyle: ['butt' | 'round' | 'projecting']
dash_joinstyle: ['miter' | 'round' | 'bevel']
dashes: sequence of on/off ink in points
drawstyle: ['default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post']
figure: a `.Figure` instance
fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top' | 'none']
gid: an id string
label: object
linestyle or ls: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) | ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''``]
linewidth or lw: float value in points
marker: :mod:`A valid marker style <matplotlib.markers>`
markeredgecolor or mec: any matplotlib color
markeredgewidth or mew: float value in points
markerfacecolor or mfc: any matplotlib color
markerfacecoloralt or mfcalt: any matplotlib color
markersize or ms: float
markevery: [None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float]
path_effects: `.AbstractPathEffect`
picker: float distance in points or callable pick function ``fn(artist, event)``
pickradius: float distance in points
rasterized: bool or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: ['butt' | 'round' | 'projecting']
solid_joinstyle: ['miter' | 'round' | 'bevel']
transform: a :class:`matplotlib.transforms.Transform` instance
url: a url string
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
See Also
--------
scatter : XY scatter plot with markers of variing size and/or color (
sometimes also called bubble chart).
Notes
-----
**Format Strings
A format string consists of a part for color, marker and line::
fmt = '[color][marker][line]'
Each of them is optional. If not provided, the value from the style
cycle is used. Exception: If line
is given, but no marker
,
the data will be a line without markers.
Colors
The following color abbreviations are supported:
============= ===============================
character color
============= ===============================
'b'
blue
'g'
green
'r'
red
'c'
cyan
'm'
magenta
'y'
yellow
'k'
black
'w'
white
============= ===============================
If the color is the only part of the format string, you can
additionally use any matplotlib.colors spec, e.g. full names
('green'
) or hex strings ('#008000'
).
Markers
============= ===============================
character description
============= ===============================
'.'
point marker
','
pixel marker
'o'
circle marker
'v'
triangle_down marker
'^'
triangle_up marker
'<'
triangle_left marker
'>'
triangle_right marker
'1'
tri_down marker
'2'
tri_up marker
'3'
tri_left marker
'4'
tri_right marker
's'
square marker
'p'
pentagon marker
'*'
star marker
'h'
hexagon1 marker
'H'
hexagon2 marker
'+'
plus marker
'x'
x marker
'D'
diamond marker
'd'
thin_diamond marker
'|'
vline marker
'_'
hline marker
============= ===============================
Line Styles
============= ===============================
character description
============= ===============================
'-'
solid line style
'--'
dashed line style
'-.'
dash-dot line style
':'
dotted line style
============= ===============================
Example format strings::
'b' # blue markers with default shape
'ro' # red circles
'g-' # green solid line
'--' # dashed line with default color
'k^:' # black triangle_up markers connected by a dotted line
.. note::
In addition to the above described arguments, this function can take a
data keyword argument. If such a data argument is given, the
following arguments are replaced by data[<arg>]:
* All arguments with the following names: 'x', 'y'.
File "<ipython-input-104-c3b0085c4838>", line 1
cielo, la persona de mkt es la que tiene que ofrecer un listado de servicios y productos:
^
SyntaxError: invalid syntax